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1. Introduction

Let Sn denote the symmetric group of all permutations of [n], where [n] =
{1, 2, . . . , n}. As usual, we write π = π(1)π(2) · · ·π(n) ∈ Sn. A fixed point of π ∈ Sn is 
an index k ∈ [n] such that π(k) = k. Let fix (π) be the number of fixed points of π. We 
say that π is a derangement if it has no fixed points. Denote by Dn the set of all derange-
ments in Sn, and the derangement number dn counts fixed point-free permutations in 
Sn. i.e., dn = #Dn. It is well known that

dn = n!
n∑

i=0

(−1)i

i! . (1)

Derangements have been studied from various perspectives, see [15,49] for surveys on 
this topic. For example, Désarménien-Wachs [15] constructed a bijection between descent 
classes of derangements and descent classes of desarrangements (a desarrangement is a 
permutation whose first ascent is even). Recently, Gustafsson-Solus [24] investigated the 
geometric interpretation of derangement polynomials.

The enumeration of finite sequences according to the number of successions was ini-
tiated by Kaplansky and Riordan in the 1940s [26,40]. There are several variants of 
successions and they have been extensively studied on various structures, including per-
mutations [6,16,19,36,47], set partitions [34,35,37], inversion sequences [38], increasing 
trees and perfect matchings [17]. For instance, an adjacency of π ∈ Sn is an index 
k ∈ [n − 1] such that π(k) = π(k + 1) + 1, see [8]. While an odd (resp. even) succes-
sion within π is meant to be an index k such that π(k) and π(k + 1) are both odd 
(resp. even), and a parity succession will refer to a succession of either kind, see [38]. 
Recently, Mansour-Shattuck [38] considered the joint distribution of four parameters on 
inversion sequences which track the number of occurrences of the two kinds of parity 
successions and runs.

A succession of π ∈ Sn is an index k ∈ [n − 1] such that π(k + 1) = π(k) + 1, and 
π(k) is called a succession value. Let suc (π) be the number of successions of π. The 
joint distribution of ascents and successions over permutations has been explored by 
Roselle [41] and Dymacek-Roselle [19]. Let qn = #{π ∈ Sn : suc (π) = 0}. Following [41, 
Eq (3.8)], one has

qn = dn + dn−1. (2)

According to [7], a relative derangement on [n] is a permutation in Sn with no succes-
sions. By the principle of inclusion and exclusion, Brualdi [7, Theorem 6.5.1] deduced 
that

qn = (n− 1)!
n∑ (−1)i(n− i)

i! .

i=0
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Combining this explicit formula with (1), Brualdi rediscovered the identity (2). A com-
binatorial interpretation of (2) has been obtained by Chen [10] by introducing skew 
derangements.

Recently, Diaconis-Evans-Graham [16] found that for all I ⊆ [n − 1], one has

#{π ∈ Sn : {k ∈ [n− 1] : π(k + 1) = π(k) + 1} = I}
= #{π ∈ Sn : {k ∈ [n− 1] : π(k) = k} = I}.

(3)

They presented three different proofs of it, including an enumerative proof, a Markov 
chain proof and a bijective proof. In [6], Brenti-Marietti extended the notion of succession 
for ordinary permutations to adjacent ascent of colored permutations.

The organization of this paper is as follows. In Section 2, we collect the definitions 
and preliminary results that will be used in the sequel. In Section 3, we investigate 
the enumerators for the joint distribution of descents, big ascents and successions over 
all permutations in the symmetric group. As an generalization of (3), we show that 
two triple set-valued statistics of permutations are equidistributed. Then we introduce 
the definition of proper left-to-right minimum. Let plrmin (π) and cyc (π) denote the 
numbers of proper left-to-right minima and cycles of π, respectively. In Section 4, we 
study the relationship between the fix and cyc (p, q)-Eulerian polynomials and the joint 
distribution of succession and Eulerian statistics. A special case of Theorem 21 says that

∑
π∈Sn+1

ssuc (π)tplrmin (π) =
∑

π∈Sn

(
t + s

2

)fix (π)

2cyc (π),

which says that (suc , plrmin ) is a symmetric distribution. In the end, the following dual 
convolution formulas are established:

n−1∑
i=1

(
n

i

)
Ai(x)An−i(x) =

∑
π∈Sn+1

simsuc (π)�1
π(1)>1

xbasc (π),

n∑
i=1

(
n

i

)
Ai(x)dn−i(x) =

∑
π∈Sn+1
suc (π)=0
π(1)>1

xbasc (π),

where An(x) and dn(x) are the classical Eulerian and derangement polynomials, respec-
tively.

2. Notation and preliminary results

During the past decades, there has been much work on the symmetric expansions of 
polynomials, see [1,28,31,33] for instances. Let f(x) =

∑n
i=0 fix

i be a polynomial with 
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real coefficients. If f(x) is symmetric, i.e., fi = fn−i for all indices 0 � i � n, then it can 
be expanded uniquely as

f(x) =
�n/2�∑
k=0

γkx
k(1 + x)n−2k.

It is said to be γ-positive if γk � 0 for all k. The polynomial f(x) is said to be spiral if

fn � f0 � fn−1 � f1 � · · · � f�n/2�,

and it is said to be alternatingly increasing if

f0 � fn � f1 � fn−1 � · · · � f�(n+1)/2�.

If f(x) is spiral and deg f(x) = n, then xnf(1/x) is alternatingly increasing, and vice 
versa. From [2, Remark 2.5], we see that f(x) has a unique decomposition f(x) = a(x) +
xb(x), where

a(x) = f(x) − xn+1f(1/x)
1 − x

, b(x) = xnf(1/x) − f(x)
1 − x

. (4)

When f(0) �= 0, we have deg a(x) = n and deg b(x) � n − 1. Note that a(x) and b(x)
are both symmetric. We call the ordered pair of polynomials (a(x), b(x)) the symmetric 
decomposition of f(x). Brändén-Solus [3] pointed out that f(x) is alternatingly increasing 
if and only if the pair of polynomials in its symmetric decomposition are both unimodal 
and have only nonnegative coefficients. Following [31, Definition 1.2], the polynomial 
f(x) is said to be bi-γ-positive if a(x) and b(x) are both γ-positive. Thus bi-γ-positivity 
is stronger than alternatingly increasing property, see [1,4,25,31] for the recent progress 
on this subject. In this paper, we shall present several new γ-positive or bi-γ-positive 
polynomials.

Let π ∈ Sn. A descent (resp. ascent, excedance) of π is an index i ∈ [n − 1] such 
that π(i) > π(i + 1) (resp. π(i) < π(i + 1), π(i) > i). Let des (π) (resp. asc (π), exc (π)) 
denote the number of descents (resp. ascents, excedances) of π. It is well known that 
descents, ascents and excedances are equidistributed over the symmetric groups, and 
their common enumerative polynomials are the Eulerian polynomials An(x), i.e.,

An(x) =
∑

π∈Sn

xdes (π) =
∑

π∈Sn

xasc (π) =
∑

π∈Sn

xexc (π).

The derangement polynomials are defined by

dn(x) =
∑

xexc (π).

π∈Dn
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In the theory of subdivisions of simplicial complexes, the Eulerian polynomial An(x)
arises as the h-polynomial of the barycentric subdivision of a simplex and derangement 
polynomial dn(x) as its local h-polynomial, see [24,45] for details.

Below are the first few Eulerian and derangement polynomials:

A0(x) = A1(x) = 1, A2(x) = 1 + x, A3(x) = 1 + 4x+ x2, A4(x) = 1 + 11x+ 11x2 + x3;

d0(x) = 1, d1(x) = 0, d2(x) = x, d3(x) = x + x2, d4(x) = x + 7x2 + x3.

The generating function of dn(x) is given as follows (see [5, Proposition 6]):

d(x; z) =
∞∑

n=0
dn(x)z

n

n! = 1 − x

exz − xez . (5)

We say that an index i is a double descent of π ∈ Sn if π(i −1) > π(i) > π(i +1), where 
π(0) = π(n + 1) = 0. Foata-Schützenberger [20] discovered the following remarkable 
result:

An(x) =
�(n−1)/2�∑

i=0
γn,ix

i(1 + x)n−1−2i, (6)

where γn,i is the number of permutations in Sn with i descents and have no double 
descents. Let cda (π) = #{i : π−1(i) < i < π(i)} be the number of cycle double ascents
of π. Using the theory of continued fractions, Shin-Zeng [42, Theorem 11] obtained that

dn(x, q) =
∑
π∈Dn

xexc (π)qcyc (π) =
�n/2�∑
k=1

∑
π∈Dn,k

qcyc (π)xk(1 + x)n−2k, (7)

where Dn,k = {π ∈ Sn : fix (π) = 0, cda (π) = 0, exc (π) = k}. So dn(x) is γ-positive.
Let P (n, r, s) be the number of permutations in Sn with r ascents and s successions. 

Roselle [41, Eq. (2.1)] proved that

P (n, r, s) =
(
n− 1
s

)
P (n− s, r − s, 0).

Let Qn be the set of permutations in Sn with no successions. Let P ∗
n(x) =∑n−1

r=1 P ∗(n, r)xr, where P ∗(n, r) = #{π ∈ Qn : asc (π) = r − 1, π(1) > 1}. Follow-
ing [41, Eq. (4.3)], one has

∞∑
n=0

P ∗
n(x)z

n

n! = 1 − x

exz − xez . (8)

Comparing (8) with (5), one can immediately find that
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P ∗
n(x) = dn(x). (9)

The ascent polynomials over Qn are defined by Pn(x) =
∑

π∈Qn
xasc (π)+1. Using [41, 

Eq. (3.8)], we see that

Pn(x) = P ∗
n(x) + xP ∗

n−1(x) = dn(x) + xdn−1(x). (10)

When x = 1, it reduces to (2). As dn(x) is γ-positive, we arrive at the following result.

Proposition 1. The polynomials Pn(x) are bi-γ-positive.

A drop of π ∈ Sn is an index i such that π(i) < i. Let drop (π) denote the number of 
drops of π. For π ∈ Dn, it is clear that exc (π) +drop (π) = n. The bivariate derangement 
polynomials are defined by

dn(x, y) =
∑
π∈Dn

xexc (π)ydrop (π).

It follows from (5) that

d(x, y; z) =
∞∑

n=0
dn(x, y)z

n

n! = y − x

yexz − xeyz . (11)

Define

Cn(x, y, s) =
∑

π∈Sn

xexc (π)ydrop (π)sfix (π),

An(x, y) = Cn(x, y, y) =
∑

π∈Sn

xexc (π)ydrop (π)+fix (π).

It is clear that dn(x, y) = Cn(x, y, 0). Since

Cn(x, y, s) =
n∑

i=0

(
n

i

)
sidn−i(x, y),

it follows from (11) that

C(x, y, s; z) =
∞∑

n=0
Cn(x, y, s)z

n

n! = (y − x)esz

yexz − xeyz . (12)

In particular, we obtain

C(x, y, y; z) =
∞∑

An(x, y)z
n

n! = (y − x)eyz

yexz − xeyz . (13)

n=0
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Let π ∈ Sn. A big ascent of π is an index i ∈ [n −1] such that π(i +1) � π(i) +2. Let 
basc (π) be the number of big ascents of π. It is clear that asc (π) = suc (π) + basc (π). 
Consider the following trivariate Eulerian polynomials

An(x, y, s) =
∑

π∈Sn

xbasc (π)ydes (π)ssuc (π). (14)

Below are these polynomials for n � 5:

A0(x, y, s) = A1(x, y, s) = 1, A2(x, y, s) = s + y,

A3(x, y, s) = (s + y)2 + 2xy, A4(x, y, s) = (s + y)3 + 6xy(s + y) + 2xy(x + y),

A5(x, y, s) = (s + y)4 + 12xy(s + y)2 + 8xy(s + y)(x + y) + 2xy(x + y)2 + 16x2y2.

In particular, An(x, 1, x) = An(1, x, 1) = An(x), where An(x) is the Eulerian polynomial. 
Define

A := A(x, y, s; z) =
∞∑

n=0
An+1(x, y, s)

zn

n! .

Note that des (π) = n − 1 − suc (π) − basc (π) for π ∈ Sn. Combining this with [41, 
Eq. (5.9)] and [41, Eq. (6.9)], it is routine to deduce that

A = ez(y+s)
(

y − x

yexz − xeyz

)2

, (15)

which can be verified directly by using (20). In Corollary 30, we give a generalization 
of (15). It should be noted that (15) can be seen as a special case of [48, Theorem 1].

Comparing (15) with (11), (12) and (13), we get the following result.

Proposition 2. For n � 0, we have

An+1(x, y, s) =
n∑

i=0

(
n

i

)
Ai(x, y)Cn−i(x, y, s),

An+1(x, y,−y) =
n∑

i=0

(
n

i

)
di(x, y)dn−i(x, y).

In particular,

An+1(x, 1, 0) =
n∑

i=0

(
n

i

)
Ai(x)dn−i(x), (16)

An+1(x, 1, 1) =
n∑(

n

i

)
Ai(x)An−i(x). (17)
i=0
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Recall that Qn = {π ∈ Sn : suc (π) = 0}. Then basc (π) = asc (π) when π ∈ Qn. 
Note that An(x, 1, 0) =

∑
π∈Qn

xbasc (π). By (16), we see that a symmetric decomposition 
of An+1(x, 1, 0) is given as follows:

An+1(x, 1, 0) = dn(x) +
n∑

i=1

(
n

i

)
Ai(x)dn−i(x).

Using (9), we observe that

dn(x) =
∑

π∈Qn+1
π(1)=1

xbasc (π).

Combining this with (10), we conclude the following new result.

Corollary 3. We have An(x, 1, 0) is bi-γ-positive and

dn+1(x) = x
n∑

i=1

(
n

i

)
Ai(x)dn−i(x) =

∑
π∈Qn+1
π(1)>1

xbasc (π)+1.

Note that

An(x, 1, 1) =
∑

π∈Sn

xbasc (π).

Below are the An(x, 1, 1) for n � 4:

A1(x, 1, 1) = 1, A2(x, 1, 1) = 2, A3(x, 1, 1) = 4 + 2x, A4(x) = 8 + 14x + 2x2.

Clearly, deg (An+1(x, 1, 1)) = n − 1. By (17), an equivalent form of the symmetric de-
composition of xn−1An+1(1/x, 1, 1) is given by

An+1(x, 1, 1) = 2An(x) +
n−1∑
i=1

(
n

i

)
Ai(x)An−i(x). (18)

It is well known (see [22]) that the product of two γ-positive polynomials is still γ-positive. 
Using (6), we see that Ai(x)An−i(x) is γ-positive and deg (Ai(x)An−i(x)) = n − 2 for 
any 1 � i � n − 1. Note that Ai(x)An−i(x) is not divisible by x. We get the following 
result.

Proposition 4. For any n � 2, the polynomial xn−2An(1/x, 1, 1) is bi-γ-positive, and so 
the big ascent polynomial An(x, 1, 1) is spiral.
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0 (I)

1 (1)

7 (u)

2 (1)

3 (1)

5 (u) 6 (v)

8 (u)

4 (t)

Fig. 1. A weighted 0-1-2 increasing planted tree on {0, 1, 2, . . . , 8}.

In subsection 4.5, we shall present a combinatorial interpretation for the decomposi-
tion (18), which will lead to two combinatorial interpretations of the Eulerian polyno-
mials An(x).

3. Triple and quadruple statistics

3.1. Main results

An increasing tree on {0, 1, 2, . . . , n} is a rooted tree with vertex set {0, 1, 2, . . . , n} in 
which the labels of the vertices are increasing along any path from the root 0 to a leaf. 
The degree of a vertex is referred to the number of its children. A 0-1-2 increasing tree
is an increasing tree in which the degree of any vertex is at most two.

Definition 5. A 0-1-2 increasing planted tree on {0, 1, . . . , n} is a rooted tree with the 
root 0 satisfying the following two conditions:

(i) the degree of each child of the root 0 is at most one;
(ii) the components of the root 0 are vertex-disjoint 0-1-2 increasing trees and the union 

of the labels of these components forms a set partition of [n].

An illustration of a 0-1-2 increasing planted tree is given by Fig. 1, where we assign a 
weight (in each parenthesis) to each vertex and there are three components of the root 
0.

We can now present the first main result of this paper.

Theorem 6. Let An(x, y, s) be the trivariate Eulerian polynomials defined by (14). Then

An+1(x, y, s) = (s + y)An(x, y, s) + xy

(
∂ + ∂ + ∂

)
An(x, y, s), (19)
∂x ∂y ∂s
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which can be rewritten as

∂

∂z
A = (s + y)A + xy

(
∂

∂x
+ ∂

∂y
+ ∂

∂s

)
A. (20)

Moreover, one has

An+1(x, y, s) =
n∑

i=0
(s + y)i

�(n−i)/2�∑
j=0

γn,i,j(2xy)j(x + y)n−i−2j , (21)

where the coefficient γn,i,j satisfies the recursion

γn+1,i,j = γn,i−1,j + (1 + i)γn,i+1,j−1 + jγn,i,j + (n− i− 2j + 2)γn,i,j−1, (22)

with the initial conditions γ0,0,0 = 1 and γ0,i,j = 0 for (i, j) �= (0, 0). The number γn,i,j
equals the number of 0-1-2 increasing planted trees on {0, 1, . . . , n} with i + j leaves, 
among which i leaves are children of the root.

Combining (5) and (15), we see that

An+1(x, 1,−1) =
n∑

i=0

(
n

i

)
di(x)dn−i(x).

Corollary 7. We have

An+1(x, y,−y) =
∑

π∈Sn+1

xbasc (π)ydes (π)(−y)suc (π) =
�n/2�∑
j=0

γn,0,j(2xy)j(x + y)n−2j ,

and so the binomial convolution of the derangement polynomials is γ-positive, i.e.,

n∑
i=0

(
n

i

)
di(x)dn−i(x) = An+1(x, 1,−1) =

�n/2�∑
j=0

γn,0,j(2x)j(1 + x)n−2j .

Given any π ∈ Sn, we define

Basc(π) ={π(i + 1) : π(i + 1) � π(i) + 2, i ∈ [n − 1]},
Des(π) ={π(i + 1) : π(i) > π(i + 1), i ∈ [n − 1]},
Suc(π) ={π(i + 1) : π(i + 1) = π(i) + 1, i ∈ [n − 1]},
Drop (π) = {π(i) : π(i) < i, i ∈ {2, 3, . . . , n}},

Êxc (π) = {π(i) : π(i) > i, i ∈ {2, 3, . . . , n}},

F̂ix (π) = {π(i) : π(i) = i, i ∈ {2, 3, . . . , n}}.
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Set drop (π) = #Drop (π), êxc (π) = #Êxc (π) and fîx (π) = #F̂ix (π).

Theorem 8. The following two triple set-valued statistics are equidistributed over Sn:

(Basc, Des, Suc) ,
(
Êxc , Drop , F̂ix

)
.

So we have ∑
π∈Sn

xbasc (π)ydes (π)ssuc (π) =
∑

π∈Sn

xêxc (π)ydrop (π)sfîx (π).

Since êxc + fîx is equidistributed with asc over Sn, it is an Eulerian statistic.

3.2. Proof of Theorem 6

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series 
in monomials formed from letters in A. Following Chen [9], a context-free grammar over 
A is a function G : A → Q[[A]] that replaces each letter in A by a formal function over 
A. The formal derivative DG with respect to G satisfies the derivation rule:

DG(u + v) = DG(u) + DG(v), DG(uv) = DG(u)v + uDG(v).

In the theory of context-free grammars, there are two widely used method. The gram-
matical labeling method is an assignment of the underlying elements of a combinatorial 
structure with variables, which is consistent with the substitution rules of a grammar, 
see [11,18]. Another well known method is the change of grammars, which essentially is 
a change of variables, see [12,13,28,30–32] for applications.

The following result is fundamental.

Lemma 9. If

G = {L → Ly,M → Ms, s → xy, x → xy, y → xy}, (23)

then we have

Dn
G(LM) = LMAn+1(x, y, s) = LM

∑
π∈Sn+1

xbasc (π)ydes (π)ssuc (π). (24)

Proof. We first introduce a grammatical labeling of π = π(1)π(2) · · ·π(n) ∈ Sn:

(i) Put a superscript label L at the front of π;
(ii) Put a superscript label M right after the maximum entry n;

(iii) If i is a big ascent, then put a superscript label x right after π(i);
(iv) If i is a descent and π(i) �= n, then put a superscript label y right after π(i);
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(v) If π(n) �= n, then put a superscript label y at the end of π;
(vi) If i is a succession, then put a superscript label s right after π(i).

The weight of π is defined to be the product of its labels. Thus the weight of π is given 
by

w(π) = LMxbasc (π)ydes (π)ssuc (π).

Note that S1 = {L1M} and S2 = {L1s2M ,L 2M1y}. Note that DG(LM) = LM(s + y). 
The weight of the element in S1 is LM and the sum of weights of the elements in S2 is 
given by DG(LM). Suppose we get all labeled permutations in Sn−1, where n � 2. Let 
π̂ be a permutation obtained from π ∈ Sn−1 by inserting n. There are six cases to label 
n and relabel some elements of π. Setting πi = π(i), then the changes of labeling can be 
illustrated as follows:

Lπ1 · · · (n− 1)M · · · �→L nMπ1 · · · (n− 1)y · · · ;
Lπ1 · · · (n− 1)M · · · �→L π1 · · · (n− 1)snM · · · ;

· · ·πx
i · · · (n− 1)M · · · �→ · · ·πx

i n
M · · · (n− 1)y · · · ;

· · ·πy
i πi+1 · · · (n− 1)M · · · �→ · · ·πx

i n
Mπi+1 · · · (n− 1)y · · · ;

· · · (n− 1)M · · ·πy
n−1 �→ · · · (n− 1)y · · ·πx

n−1n
M ;

· · ·πs
i πi+1 · · · (n− 1)M · · · �→ · · ·πx

i n
Mπi+1 · · · (n− 1)y · · · .

In each case, the insertion of n corresponds to one substitution rule in G. By induction, 
it is routine to check that the action of the formal derivative DG on the set of weighted 
permutations in Sn−1 gives the set of weighted permutations in Sn. This completes the 
proof of (24). �
A proof Theorem 6:

Proof. (A) Let G be the grammar given by (23). By induction, we see that there exist 
nonnegative integers an,i,j such that

Dn
G(LM) = LM

n∑
i,j=0

an,i,jx
iyjsn−i−j .

Then we get

DG (Dn
G(LM))

= LM
n∑

an,i,j
(
xiyj+1sn−i−j + xiyjsn+1−i−j

)
+

i,j=0
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LM
n∑

i,j=0
an,i,j

(
ixiyj+1sn−i−j + jxi+1yjsn−i−j + (n− i− j)xi+1yj+1sn−1−i−j

)
.

Comparing the coefficients of LMxiyjsn+1−i−j in both sides of the above expression, we 
get

an+1,i,j = an,i,j + (1 + i)an,i,j−1 + jan,i−1,j + (n− i− j + 2)an,i−1,j−1. (25)

Multiplying both sides of (25) by xiyjsn+1−i−j and summing over all i, j, we arrive 
at (19).

(B) We now make a change of variables. Setting u = 2xy, v = x + y, t = s + y and 
I = LM , we get DG(u) = uv, DG(v) = u, DG(t) = u and DG(I) = It. Thus we get a 
new grammar

G′ = {I → It, t → u, u → uv, v → u}. (26)

Note that DG′(I) = It, D2
G′(I) = I(t2 + u) and D3

G′(I) = I(t3 + 3tu + uv). Then by 
induction, it is routine to check that there exist nonnegative integers γn,i,j such that

Dn
G′(I) = I

n∑
i=0

ti
�(n−i)/2�∑

j=0
γn,i,ju

jvn−i−2j . (27)

Then upon taking u = 2xy, v = x + y, t = s + y and I = LM , we get (21). In particular, 
γ0,0,0 = 1 and γ0,i,j = 0 if (i, j) �= (0, 0). Since Dn+1

G′ (I) = DG′ (Dn
G′(I)), we obtain

DG′ (Dn
G′(I)) = I

∑
i,j

γn,i,j
(
ti+1ujvn−i−2j + iti−1uj+1vn−i−2j)+

I
∑
i,j

γn,i,j
(
jtiujvn+1−i−2j + (n− i− 2j)tiuj+1vn−1−i−2j) .

Comparing the coefficients of tiujvn+1−i−2j in both sides of the above expansion, we 
get (22).

(C) The combinatorial interpretation of γn,i,j can be found by using the following 
grammatical labeling. Given a 0-1-2 increasing planted tree T , the root 0 is labeled by 
I. For the children of the root, each child with degree 0 (a leaf of the root) is labeled by 
t and each child with degree one is labeled by 1. For the other vertices (not the children 
of the root), each leaf is labeled by u, each vertex with degree one is labeled by v and 
each vertex of degree two is labeled by 1. See Fig. 1 for an example, where the labels are 
given in the parentheses.

Let T be the 0-1-2 increasing planted tree given in Fig. 1. We distinguish four cases:

(i) If we add 9 as a child of the root 0, then the vertex 9 becomes a leaf of the root, 
and the label of 9 is t. This corresponds to the substitution rule I → It;
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(ii) If we add 9 as a child of the vertex 4, the label of 4 becomes 1, and the vertex 9 
gets the label u. This corresponds to the substitution rule t → u;

(iii) If we add 9 as a child of the vertex 5 (resp. 7, 8), the label u of 5 (resp. 7, 8) 
becomes v, and the vertex 9 gets the label u. This corresponds to the substitution 
rule u → uv;

(iv) If we add 9 as a child of the vertex 6, the label v of 6 becomes 1, and the vertex 9 
gets the label u. This corresponds to the substitution rule v → u.

The aforementioned four cases exhaust all the cases to construct a 0-1-2 increas-
ing planted tree T ′ on {0, 1, 2, . . . , n, n + 1} from a 0-1-2 increasing planted tree T on 
{0, 1, 2, . . . , n} by adding n + 1 as a leaf. Since Dn

G′(I) equals the sum of the weights 
of 0-1-2 increasing planted trees on {0, 1, 2, . . . , n}, then γn,i,j counts 0-1-2 increasing 
planted tree T on {0, 1, 2, . . . , n} with i + j leaves, among which i leaves are the children 
of the root. This completes the proof. �
3.3. Proof of Theorem 8

We now write any permutation in Sn by using its standard cycle form, where each 
cycle is written with its smallest entry first and the cycles are written in increasing order 
of their smallest entry. Another grammatical labeling of π ∈ Sn is given as follows:

(i) Put a superscript label L right after the entry 1;
(ii) Put a superscript label M at the end of π;

(iii) If π(i) ∈ Drop (π), then put a superscript label y right after i;
(iv) If π(i) ∈ Êxc (π), then put a superscript label x right after i;
(v) If π(i) ∈ F̂ix (π), then put a superscript label s right after i.

Thus the weight of π is given by

w(π) = LMxêxc (π)ydrop (π)sfîx (π).

In particular, S1 = {(1L)M}, S2 = {(1L)(2s)M , (1L, 2y)M}, and the elements in S3

are listed as follows:

(1L)(2s)(3s)M , (1L)(2x, 3y)M , (1L, 3y)(2s)M , (1L, 2y)(3s)M , (1L, 3y, 2y)M ,

(1L, 2x, 3y)M .

Along the same lines as in the proof of Lemma 9, one can easily deduce that

Dn
G(LM) = LM

∑
xêxc (π)ydrop (π)sfîx (π). (28)
π∈Sn+1
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As illustrated by Example 10, by analyzing the changes of labeling, it is routine to check 
that

(Basc, Des, Suc) ,
(
Êxc , Drop , F̂ix

)
are equidistributed over Sn and we omit the details for simplicity.

Example 10. When n = 3, the correspondences of (Basc, Des, Suc) and 
(
Êxc , Drop ,

F̂ix
)

can be listed as follows:

L1s2s3M ↔ (1L)(2s)(3s)M ; L1x3M2y ↔ (1L)(2x3y)M ; L3M1s2y ↔ (1L3y)(2s)M ;
L2y1x3M ↔ (1L2x3y)M ; L2s3M1y ↔ (1L2y)(3s)M ; L3M2y1y ↔ (1L3y2y)M .

3.4. Another interpretation of the coefficients γn,i,j

Simsun permutations were introduced by Simion and Sundaram when they studied 
the action of the symmetric group on the maximal chains of the partition lattice [46, 
p. 267]. We say that π ∈ Sn has no proper double descents if there is no index i ∈ [n −2]
such that π(i) > π(i + 1) > π(i + 2). Then π is called simsun if for all k, the subword of 
π restricted to [k] (in the order they appear in π) contains no proper double descents. 
Let RSn be the set of simsun permutations of length n. Define

Sn(x) =
∑

π∈RSn

xdes (π).

Here we list another three combinatorial interpretations of Sn(x):

• the polynomial Sn(x) is also the descent polynomial of Andŕe permutations of the 
second kind of order n + 1, see [14,21];

• the polynomial xSn(x) equals the André polynomial that counts increasing 0-1-2 
trees on [n + 1] by their leaves, see [11,21];

• the polynomial Sn(x) counts simsun permutations of the second kind of order n by 
their numbers of excedances, see [29].

A value x = π(i) is called a cycle double ascent of π if i = π−1(x) < x < π(x). We say 
that π ∈ Sn is a simsun permutation of the second kind if for all k ∈ [n], after removing 
the k largest letters of π, the resulting permutation has no cycle double ascents. For 
example, (1, 6, 5, 3, 4)(2) is not a simsun permutation of the second kind since when we 
remove the letters 5 and 6, the resulting permutation (1, 3, 4)(2) contains the cycle double 
ascent 3. Let SSn be the set of the simsun permutations of the second kind of length n. 
We can now present another interpretation of the coefficients γn,i,j defined by (21).
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Proposition 11. For any 0 � i � n and 0 � j � �(n − i)/2	, the number γn,i,j counts 
simsun permutations of the second kind of order n which have exactly i fixed points and 
j excedances.

Proof. We write any permutation in SSn by using its standard cycle form. In order to 
get a permutation π′ ∈ SSn+1 with i fixed points and j excedances from a permutation 
π ∈ SSn, we distinguish four cases:

(c1) If π ∈ SSn and fix (π) = i − 1 and exc (π) = j, then we need append (n + 1) to π
as a new cycle. This accounts for γn,i−1,j possibilities;

(c2) If π ∈ SSn and fix (π) = i + 1 and exc (π) = j − 1, then we should insert the entry 
n + 1 right after a fixed point. This accounts for (1 + i)γn,i+1,j−1 possibilities;

(c3) If π ∈ SSn and fix (π) = i and exc (π) = j, then we should insert the entry n + 1
right after an excedance. This accounts for jγn,i,j possibilities;

(c4) Since π ∈ SSn has no cycle double ascents, we say that π(i) is a cycle peak if i is an 
excedance, i.e. i < π(i). If π ∈ SSn and fix (π) = i and exc (π) = j − 1, then there 
are n −i −2(j−1) positions could be inserted the entry n +1, since we cannot insert 
n + 1 immediately before or right after each cycle peak of π, and we cannot insert 
n +1 right after a fixed point. This accounts for (n − i −2j+2)γn,i,j−1 possibilities.

Thus the recursion (22) holds. This completes the proof. �
3.5. Proper left-to-right minimum statistic

Let π = π(1)π(2) · · ·π(n) ∈ Sn. In this subsection, we always identify π with the 
word π(1)π(2) · · ·π(n)π(n + 1), where π(n + 1) = 0. For 1 � i � n, a value π(i) is called 
a left-to-right minimum if π(i) < π(j) for all 1 � j < i or i = 1. Let lrmin (π) be the 
number of left-to-right minima of π.

Definition 12. Given π ∈ Sn. We say that π(i) is a proper left-to-right minimum if it 
satisfies the following two conditions:

• π(i) is a left-to-right minimum and π(i) �= 1,
• there exists an index k > i such that π(k) = π(i) − 1 and π(k) > π(k + 1).

Let plrmin (π) be the number of proper left-to-right minima of π.

Example 13. For π ∈ S3, we have

plrmin (123) = plrmin (132) = plrmin (213) = 0,

plrmin (231) = plrmin (312) = 1, plrmin (321) = 2.



S.-M. Ma et al. / Advances in Applied Mathematics 162 (2025) 102772 17
Consider the (s, t)-Eulerian polynomials

Ân(x, y, s, t) =
∑

π∈Sn

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π).

In particular, Â1(x, y, s, t) = 1, Â2(x, y, s, t) = s + t, Â3(x, y, s, t) = (s + t)2 + 2xy.

Lemma 14. If

G = {L → Lt,M → Ms, s → xy, t → xy, x → xy, y → xy},

then we have

Dn
G(LM) = LMÂn+1(x, y, s, t) = LM

∑
π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π).

(29)

Proof. A grammatical labeling of π = π(1)π(2) · · ·π(n) ∈ Sn can be given as follows:

(i) Put a superscript label L at the front of π;
(ii) Put a superscript label M right after the maximum entry n;

(iii) If i is a big ascent, then put a superscript label x right after π(i);
(iv) If i is a succession, then put a superscript label s right after π(i);
(v) If i is a descent and π(i) +1 is a left-to-right minimum, then put a superscript label 

t right after π(i);
(vi) If i is a descent and π(i) + 1 is not a left-to-right minimum, then put a superscript 

label y right after π(i).

Then the weight of π is given by

w(π) = LMxbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π).

Note that S1 = {L1M} and S2 = {L1s2M ,L 2M1t}. Note that DG(LM) = LM(s + t). 
Hence the weight of the element in S1 is LM and the sum of weights of the elements 
in S2 is given by DG(LM). Along the same lines as in the proof of Lemma 9, one can 
discuss the general cases and we omit the details for simplicity. �

The sets of succession values and proper left-to-right minima of π ∈ Sn are defined 
by

Suc∗(π) = {π(i) : π(i + 1) = π(i) + 1, i ∈ [n − 1]} ,

Plrmin(π) = {π(i) : i is a descent and π(i) + 1 is a left-to-right minimum}.
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Using the grammatical labeling given in the proof of Lemma 14, it is routine to verify 
the following result, see Example 16 for an illustration.

Proposition 15. The pair of set-valued statistics (Suc∗, Plrmin) is symmetric over Sn.

Example 16. Recall that S2 = {L1s2M ,L 2M1t}. Consider the insertion of the entry 3. 
Using the correspondences L ↔ M , s ↔ t and x ↔ y, the symmetry of the pair of 
set-valued statistics (Suc∗, Plrmin) is demonstrated as follows:(

Suc∗(L1s2s3M), Plrmin(L1s2s3M)
)

= ({1, 2}, ∅) ↔
(
Suc∗(L3M2t1t), Plrmin(L3M2t1t)

)
= (∅, {1, 2});(

Suc∗(L1x3M2y), Plrmin(L1x3M2y)
)

= (∅, ∅) ↔
(
Suc∗(L2y1x3M), Plrmin(L2y1x3M)

)
= (∅, ∅);(

Suc∗(L3M1s2t), Plrmin(L3M1s2t)
)

= ({1}, {2}) ↔
(
Suc∗(L2s3M1t), Plrmin(L2s3M1t)

)
= ({2}, {1}).

The following theorem is easily derived from Lemma 14 in the same way as Theorem 6.

Theorem 17. For the (s, t)-Eulerian polynomials, we have

Ân+1(x, y, s, t) = (s + t)Ân(x, y, s, t) + xy

(
∂

∂x
+ ∂

∂y
+ ∂

∂s
+ ∂

∂t

)
Ân(x, y, s, t); (30)

Ân+1(x, y, s, t) =
n∑

i=0
(s + t)i

�(n−i)/2�∑
j=0

γn,i,j(2xy)j(x + y)n−i−2j , (31)

which implies that Ân+1(x, y, s, t) is symmetric in the variables s and t as well as x and 
y.

Corollary 18. We have

∑
π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)(−s)plrmin (π) =
�n/2�∑
j=0

γn,0,j(2xy)j(x + y)n−2j .

A special case of (31) says that Ân+1(x, 1, s, t) is partial γ-positive, i.e.,

Ân+1(x, 1, s, t) =
n∑

i=0
(s + t)i

�(n−i)/2�∑
j=0

γn,i,j(2x)j(x + 1)n−i−2j .

Comparing (31) with Corollary 3, we see that Ân(x, 1, s, t) is bi-γ-positive if s + t = 1. 
Combining this with [31, Theorem 2.4], we obtain the following result.
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Corollary 19. Let s and t be given real numbers such that 0 � s +t � 1, then Ân(x, 1, s, t)
is alternatingly increasing.

4. Relationship to fix and cyc (p, q)-Eulerian polynomials

4.1. A fundamental lemma on (p, q)-Eulerian polynomials

The fix and cyc (p, q)-Eulerian polynomials An(x, y, p, q) are defined by

An(x, y, p, q) =
∑

π∈Sn

xexc (π)ydrop (π)pfix (π)qcyc (π).

This (p, q)-Eulerian polynomial contains a great deal of information about permutations 
and colored permutations, see [27,31,39] for details. In particular, according to Theo-
rem [31, Theorem 3.6], when 0 � p � 1 and 0 � q � 1, the polynomials An(x, 1, p, q) are 
alternatingly increasing. The following result will be used repeatedly in our discussion.

Lemma 20 ([31, Lemma 3.12, Theorem 3.4]). If

G1 = {I → Ipq, p → xy, x → xy, y → xy}, (32)

then we have

Dn
G1

(I) = I
∑

π∈Sn

xexc (π)ydrop (π)pfix (π)qcyc (π).

Consider the change of variable u = xy and v = x +y. Then DG1(I) = Ipq, DG1(p) = u, 
DG1(u) = uv, DG1(v) = 2u. Setting

G2 = {I → Ipq, p → u, u → uv, v → 2u}, (33)

then we get

Dn
G2

(I) = I
n∑

i=0
pi

�(n−i)/2�∑
j=0

γn,i,j(q)ujvn−i−2j , (34)

where

γn,i,j(q) =
∑

π∈Sn,i,j

qcyc (π) (35)

and Sn,i,j = {π ∈ Sn : cda (π) = 0, fix (π) = i, exc (π) = j}.
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4.2. Four-variable polynomials

We can now present the first result of this section.

Theorem 21. We have∑
π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π)

=
∑

π∈Sn

xexc (π)ydrop (π)
(
t + s

2

)fix (π)

2cyc (π).

When t = y, it reduces to

∑
π∈Sn+1

xbasc (π)ydes (π)ssuc (π) =
∑

π∈Sn

xexc (π)ydrop (π)
(
y + s

2

)fix (π)

2cyc (π).

Proof. Consider a change of the grammar G given by Lemma 14. Set LM = I, t +s = pq, 
where p = t+s

2 , q = 2, then we get the substitution rules defined by (32). By Lemma (20), 
we immediately get the desired expression. This completes the proof. �

Combining Theorem 21 and Propositions 1 and 4, we get the following.

Corollary 22. For any n � 1, the following two polynomials are alternatingly increasing 
and spiral, respectively:∑

π∈Sn

xexc (π)2cyc (π)−fix (π),
∑

π∈Sn

xexc (π)2cyc (π).

4.3. Five-variable polynomials

In this subsection, we shall consider the joint distribution of the numbers of succes-
sions, peaks, double ascents and double descents. We need some more definitions. In this 
subsection, we always let π(0) = π(n + 1) = 0 for π ∈ Sn. Then for i ∈ [n], any entry 
π(i) can be classified according to one of the four cases:

• a peak if π(i − 1) < π(i) > π(i + 1);
• a valley if π(i − 1) > π(i) > π(i + 1);
• a double ascent if π(i − 1) < π(i) < π(i + 1);
• a double descent if π(i − 1) > π(i) > π(i + 1).

Let pk (π) (resp. val(π), dasc (π), ddes (π)) denote the number of peaks (resp. valleys, 
double ascents, double descents) in π. It is clear that pk (π) = val(π) +1. In recent years, 
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these statistics have been extensively studied by using various techniques, including 
continued fractions [43,44] and noncommutative symmetric functions [23,50].

Definition 23. We say that a value π(i) is a simsun succession of π if π(i) + 1 lies to 
the right of π(i) and all the values (if any) between π(i) and π(i) + 1 are greater than 
π(i) + 1.

Let simsuc (π) denote the number of simsun successions of π. Clearly, suc (π) �
simsuc (π).

Example 24. For π ∈ S3, we have

simsuc (123) = 2, simsuc (132) = 1, simsuc (213) = 0,

simsuc (231) = simsuc (312) = 1, simsuc (321) = 0.

Consider a refinement of Eulerian polynomials

An(α1, α2, α3, α4, s) =
∑

π∈Sn

α
pk (π)
1 α

val(π)
2 α

dasc (π)
3 α

ddes (π)
4 ssimsuc (π).

In particular, A1(α1, α2, α3, α4, s) = α1 and A2(α1, α2, α3, α4, s) = α1(sα3 + α4).

Theorem 25. Let be γn,i,j(q) defined by (35). Then we have

An+1(α1, α2, α3, α4, s) =
n∑

i=0

(
sα3 + α4

s + 1

)i �(n−i)/2�∑
j=0

γn,i,j(s + 1)αj+1
1 αj

2(α3 + α4)n−i−2j .

In particular,

An+1(1, 1, 1, 1, s) = (1 + s)(2 + s) · · · (n + s) =
n∑

k=0

[
n

k

]
(s + 1)k,

where 
[
n
k

]
is the unsigned Stirling numbers of the first kind, i.e., 

[
n
k

]
= #{π ∈ Sn :

cyc (π) = k}.

Proof. We claim that if G = {α1 → α1α4, α2 → α2α3, α3 → α1α2, α4 → α1α2, M →
sMα3}, then we have

Dn
G(Mα1) = MAn+1(α1, α2, α3, α4, s). (36)

Recall that permutations are prepended and appended by 0. We now give a grammatical 
labeling on permutations to generate the generalized Eulerian polynomials:
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(i) If π(i) = n, we label it as α1nM ;
(ii) If π(i) is a peak and π(i) �= n, we label it as α1π(i)α2 ;

(iii) If π(i) is a double ascent, we put a superscript α3 just before π(i);
(iv) If π(i) is a double descent, we put a superscript α4 right after π(i);
(v) If π(i) is a simsun succession, we put a subscript s right after π(i).

With this labeling, the weight of π is given as follows:

Mα
pk (π)
1 α

val(π)
2 α

dasc (π)
3 α

ddes (π)
4 ssimsuc (π).

Note that S1 = {α11M} and S2 = {α31α1
s 2M , α12M1α4}. Then the sum of weights of 

the elements in S2 is given by DG(Mα1). We now present an example to illustrate the 
general case. Let π = 134265 ∈ S6, the grammatical labeling of π is given as follows:

α31α3
s 3α1

s 4α22α16M5α4 .

When we insert 7 into π, the generated weighted permutations and their corresponding 
substitution rules can be listed as follows:

α17M1α3
s 3α1

s 4α22α16α25α4 ↔ α3 → α1α2;
α31α1

s 7M3α1
s 4α22α16α25α4 ↔ α3 → α1α2;

α31α3
s 3α1

s 7M4α42α16α25α4 ↔ α1 → α1α4;
α31α3

s 3α3
s 4α17M2α16α25α4 ↔ α2 → α2α3;

α31α3
s 3α1

s 4α22α17M6α45α4 ↔ α1 → α1α4;
α31α3

s 3α1
s 4α22α36α1

s 7M5α4 ↔ M → sMα3;
α31α3

s 3α1
s 4α22α16α25α17M ↔ α4 → α1α2.

Each insertion of 7 corresponds to one substitution rule in G. Continuing in this way, 
we can eventually generate all the weighted elements in Sn. This completes the proof 
of (36).

Note that

DG(Mα1) = Mα1(sα3 + α4), DG(sα3 + α4) = (1 + s)α1α2,

DG(α1α2) = α1α2(α3 + α4), DG(α3 + α4) = 2α1α2.

We make a change of variables. Setting a = Mα1, b = sα3 + α4, u = α1α2 and 
v = α3 + α4, we get the following grammar:

G′ = {a → ab, b → (1 + s)u, u → uv, v → 2u}.
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Consider a change of the grammar G′. Set a = I, b = pq, where p = b
1+s , q = 1 + s, 

then we get the grammar G2 defined by (33). Substituting I = α1, p = sα3+α4
1+s , q =

1 + s, u = α1α2 and v = α3 + α4 into (34), we immediately get the desired expression. 
This completes the proof. �
Corollary 26. We have

An+1(α1, α2, α3, α4, 0) =
n∑

i=0
αi

4

�(n−i)/2�∑
j=0

γn,i,j(1)αj+1
1 αj

2(α3 + α4)n−i−2j ,

where γn,i,j(1) = #{π ∈ Sn : cda (π) = 0, fix (π) = i, exc (π) = j}.

Let

γ = γ(x, p, q; z) = 1 +
∞∑

n=1

n∑
i=0

pi
�(n−i)/2�∑

j=0
γn,i,j(q)xj z

n

n! .

According to [31, Eq (13)], we have

γ(x, p, q; z) = ez
(
p− 1

2
)
q

( √
1 − 4x√

1 − 4x cosh
(
z
2
√

1 − 4x
)
− sinh

(
z
2
√

1 − 4x
))q

.

Define

A(α1, α2, α3, α4, s; z) =
∞∑

n=0

1
α1

An+1(α1, α2, α3, α4, s)
zn

n! .

By Theorem 25, we get the following.

Corollary 27. We have

A(α1, α2, α3, α4, s; z) = γ

(
α1α2

(α3 + α4)2
,

sα3 + α4

(s + 1)(α3 + α4)
, 1 + s; (α3 + α4)z

)
= 1 + (sα3 + α4)z + (α1α2(1 + s) + (sα3 + α4)2)

z2

2! + · · · .

4.4. Six-variable polynomials

Recall that

An(x, y, p, q) =
∑

π∈Sn

xexc (π)ydrop (π)pfix (π)qcyc (π).

Using the exponential formula, Ksavrelof-Zeng [27] found that
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∞∑
n=0

An(x, 1, p, q)z
n

n! =
(

(1 − x)epz

exz − xez

)q

.

Since exc (π) + drop (π) + fix (π) = n for π ∈ Sn, it follows that

∞∑
n=0

An(x, y, p, q)z
n

n! =
(

(y − x)epz

yexz − xeyz

)q

. (37)

We now provide a generalization of Lemma 14, which can be proved in the same way.

Lemma 28. If G = {L → pLt, M → qMs, s → xy, t → xy, x → xy, y → xy}, then we 
have

Dn
G(LM) = LM

∑
π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π)plrmin (π)−1qsimsuc (π).

Theorem 29. We have∑
π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π)plrmin (π)−1qsimsuc (π)

= An

(
x, y,

pt + qs

p + q
, p + q

)
,

which implies that (suc , plrmin ) and (lrmin (π) − 1, simsuc ) are both symmetric distri-
bution.

Proof. Let G be the grammar given by Lemma 28. Note that DG(LM) = LM(pt + qs)
and DG(pt + qs) = (p + q)xy. Setting LM → I, pt+qs

p+q → p and p + q → q, we obtain 
the substitution rules defined by (32). By Lemma (20) and (37), we immediately get the 
desired expression. This completes the proof. �

Combining (37) and Theorem 29, we can give the following generalization of (15).

Corollary 30. We have

∞∑
n=0

∑
π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π)plrmin (π)−1qsimsuc (π) z
n

n!

= e(pt+qs)z
(

y − x

yexz − xeyz

)p+q

= 1 + (qs + pt)z +
(
(qs + pt)2 + (p + q)xy

) z2

2 +

(
(qs + pt)3 + 3(p + q)(qs + pt)xy + (p + q)xy(x + y)

) z3
+ · · · .
3!
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We now provide some particular cases of Theorem 29.

Corollary 31.

(a) When x = y = 1, we have

∑
π∈Sn+1

ssuc (π)tplrmin (π)plrmin (π)−1qsimsuc (π) =
∑

π∈Sn

(
pt + qs

p + q

)fix (π)

(p + q)cyc (π).

(b) When q = 0 and y = s = p = 1, we have∑
π∈Sn+1

simsuc (π)=0

xbasc (π)tplrmin (π) =
∑

π∈Sn

xexc (π)tfix (π). (38)

(c) When y = s = t = 1, we have∑
π∈Sn+1

xbasc (π)plrmin (π)−1qsimsuc (π) =
∑

π∈Sn

xexc (π)(p + q)cyc (π).

(d) When q = −p, we have∑
π∈Sn+1

xbasc (π)ydes (π)−plrmin (π)ssuc (π)tplrmin (π)plrmin (π)−1(−p)simsuc (π) = pn(t−s)n,

since only the identity permutation 12 · · ·n contributes the nonzero term in the right 
side.

(e) When y = 1 and t = s, we have∑
π∈Sn+1

xbasc (π)ssuc (π)+plrmin (π)plrmin (π)−1qsimsuc (π)

=
∑

π∈Sn

xexc (π)sfix (π)(p + q)cyc (π).

(f) When s = x and t = y, we have∑
π∈Sn+1

xasc (π)ydes (π)plrmin (π)−1qsimsuc (π)

=
∑

π∈Sn

xexc (π)ydrop (π)
(
py + qx

p + q

)fix (π)

(p + q)cyc (π).

(g) When s = −t and q = p, we have∑
xbasc (π)ydes (π)−plrmin (π)(−t)suc (π)tplrmin (π)psimsuc (π)+lrmin (π)−1
π∈Sn+1
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=
∑
π∈Dn

xexc (π)ydrop (π)(2p)cyc (π),

where Dn is the set of derangements in Sn. Setting y = t = 1, we get∑
π∈Sn+1

xbasc (π)(−1)suc (π)psimsuc (π)+lrmin (π)−1 =
∑

π∈Dn

xexc (π)(2p)cyc (π),

which is γ-positive following from (7).

By [31, Theorem 3.6], we see that if t ∈ [0, 1] and q ∈ [−1, 0], then the following two 
polynomials are alternatingly increasing:∑

π∈Sn
simsuc (π)=0

xbasc (π)tplrmin (π),
∑

π∈Sn+1

xbasc (π)qsimsuc (π).

4.5. A combinatorial interpretation of the expression (18)

Recall that

An(x, 1, 1) =
∑

π∈Sn

xbasc (π).

From (18), we see that An+1(x, 1, 1) can be rewritten as a sum of three parts:

An+1(x, 1, 1) = An(x) + An(x) +
n−1∑
i=1

(
n

i

)
Ai(x)An−i(x). (39)

In the sequel, we explore a combinatorial interpretation for the decomposition (39). 
Firstly, we claim that

An(x) =
∑

π∈Sn+1
π(1)=1

xbasc (π), (40)

which gives a new interpretation of the Eulerian polynomial. It is easy to verify that the 
above expression holds for any n � 4. Let An(x) =

∑n−1
k=0

〈
n
k

〉
xk. It is well known that 

the Eulerian numbers 
〈
n
k

〉
satisfy the recursion〈

n + 1
k

〉
= (k + 1)

〈
n

k

〉
+ (n− k + 1)

〈
n

k − 1

〉
, (41)

with 
〈1
0
〉

= 1 and 
〈1
k

〉
= 0 if k < 0 or k � 1. Define An = {π ∈ Sn+1 : π(1) = 1}. In 

order to get a permutation π ∈ An+1 with k big ascents from a permutation π′ ∈ An by 
inserting the entry n + 2 into π′, we distinguish two cases:
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• If basc (π′) = k, then we have to insert the entry n + 2 right after each big ascent 
value or right after the entry n + 1. There are k + 1 ways to insert n + 2, and the 
first term of the right-hand side of (41) is explained;

• If basc (π′) = k − 1, then we have to insert the entry n + 2 right after one of the 
other n + 1 − (k − 1) − 1 = n − k + 1 positions. The second part of the right-hand 
side is explained and so we complete the proof of (40).

Secondly, setting t = 1 in (38), we see that∑
π∈Sn+1

simsuc (π)=0

xbasc (π) =
∑

π∈Sn

xexc (π) = An(x). (42)

When n � 1, if π ∈ An, it is clear that simsuc (π) � 1. Then {π ∈ Sn+1 : simsuc (π) = 0}
is disjoint with An. Using (40) and (42), we discover that the third part of (39) has the 
following combinatorial interpretation:

n−1∑
i=1

(
n

i

)
Ai(x)An−i(x) =

∑
π∈Sn+1

simsuc (π)�1
π(1)>1

xbasc (π).

From Corollary 3, we see a dual of the above convolution formula:

n∑
i=1

(
n

i

)
Ai(x)dn−i(x) =

∑
π∈Sn+1
suc (π)=0
π(1)>1

xbasc (π).
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